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The thermostress state of a two-layer system is investigated by a flnite-difference method. 

Suppose that a plane-parallel isotropic metallic layer of thickness bt, occupying the region {0 <- z -<- bt, 
-~o < x, y < +oo}, is brought into contact along the base z = b 1 with another layer of thickness [I) 2 - bl], occupy- 
ing the region {b 1 -< z -< b2, -~o < x, y < +,o}, under the assumption that the mechanicothermal characteristics 
of the layers are different. There is heat transfer through the layer surfaces z = 0 and z = b 2 with an external 
medium whose temperature changes at the initial instant from T o to T c, subsequently (for simplicity) remain- 
ing constant. At t = 0 the temperature of the layer is T O and the heating rate is assumed to be zero. 

Within the framework of dynamic unbound thermoelastlcity theory, the problem of finding the stress 
state of a two- layer  sys tem is posed in dimensionless  coordinates in a one-dimensionless  formulat ion as fol-  
lows [1]: to find in the region 
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the finite solution of the sys t em of equations 
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with the initial conditions (T = 0) 
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boundary conditions 
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and conditions of ideal thermomechanical  contact 
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T is the t empera tu re ;  W, displacement;  Cq and cl, velocities of propagation of the thermal  and longitudinal 
waves;  a ,  #, c~ T,  and h, the rmal  diffusivity,  Poisson 's  ra t io ,  the l inear-expansion coefficient,  and the the r -  
mal  conductivity; p, density;  c, specific heat. 
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TABLE 1. T h e r m o s t r e s s  State of Contact Boundary 

4, 
5, 
6, 
7, 
8, 
9, 

lO, i 

01.10"a 

i= I  

O, 
0,002 
0,029 
0,224 
1,125 
4,028 

10,029 

f=2 

O, 
0,002 
0,029 
0,224 
1,125 
4,028 

10,029 

i=1 

0.019 
0,621 
8,972 
71,001 
348,29 
1141,29 
2440,71 

i=2 

0,017 
0,565 
8,169 

64,646 
317,118 
1039,15 
2222,27 

i=!  

0,005 
0,136 
1,671 

10,967 
42,34 
99,18 

128,45 

~i.10"* ai z. 10 - a  

i=2 

0,004 
0,092 
1,137 
7,463 

28,853 
67,492 

87,410 

TABLE 2. T h e r m o s t r e s s  State of Laye r  Surfaces 

x (~lz(~ %2(2o) ~lx(o) = o~(o) %2(2o)=~0o) 

--0,56903 
--0,14657 
--0,29027 

0,47555 
0,06781 

--0,02424 
0,12686 
0,11149 

--0,00081 

--0,57825 
--0,18994 
--0,31894 

0,53798 
0,13963 

--0,01024 
0,12046 

�9 0,11104 
0,00428 

--0,81529 
--0,63422 
--0,69581 

0,20382 
0,02906 

--0,01039 
0,05437 
0,04778 

--0,00035 

--0,81923 
--0,65281 
--0,70810 

0,23058 
0,05984 

--0,00439 
0,05163 
0,04759 
0,00183 
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where | a re  given by the relations 1 

Constructing the solutions in analytic form leads to complex expressions for the generalized fields [2], 
and also the displacement and stress fields [3], which poses certain difficulties for their computer realiza- 
tion. Therefore, in investigating the thermostress state of objects it is more sensible, in some cases, to 
use approximate methods of solving thermoelasticity problems. In the given work, the thermoelastic fields 
in the two-layer system are determined by a finite-difference method. 

Replacing the derivatives with respect to the coordinate and time in Eq. (I) and the conditions (2)- 
(4) by the corresponding difference relations [4], a finite-difference analog of the postulated problem is ob- 
tained. Then, omitting the residual terms which tend to zero when I and h i tend to zero, the recurrence rela- 
tions for the displacement take the form 
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Analogous re la t ions  a re  found for  the init ial ,  boundary,  and contact  conditions. The convergence and 
stabil i ty of the computation p roce s s  rea l iz ing  Eqs.  (5) and (6) is ensured  by consis tent  choice of the quant iza-  
tion steps over  the t ime l and the coordinate  hi ,  using the condition 

1 2 / M ~ h ~  1. 

By means  of Eq. (5), the d isp lacement  at any in ternal  point of the l aye r s  can be found f rom known values  
of the d isp lacements  at  the points (~k' Tin-l);  (~k, rm ) ,  (~k-1, Tin), (~k+l, Trn) and the t e m p e r a t u r e s  at the, 
points (~k-~, Tin), (~k, ~'m), 

..... ..... I l. 
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TABLE 3. Temperature Stress in the Vicinity of Contact 

T 
7 9 II  12 

--0,02473 
--0.46605 
--1,15087 

--0,00018 
--0,0'2269 
--0,34638 

--0,000008 
--0,00251 
--0,07834 

-0,000001 
--0,000319 
--0,01949 

The calculation of the displacements, organized using a program written in the language MNEMOKOD 
for an M-6000 computer, proceeds as follows: the columns of the temperature matrix are filled successively 
at each time level. In filling each column, beginning with the second time level, three regions of time-level 
formation are isolated using logic units: the boundary, internal, and contact regions. The values for the 
boundary region are obtained from Eq. (3), those for the internal region from Eq. (6), and those from the con- 
tact region by solving Eqs. (4). The f i rs t  level is formed using Eq. (2). When the calculation of the tempera- 
ture matrix is complete, it is used in an analogous calculation of the displacements. The level ends when a 
given value of the time reached. After the calculations are complete, the temperature and displacement 
matrices calculated are printed out. The s tress  field is determined from the relation [1] 

where ai z i = azz (1-2/~i)/EiaTi07c-T0); E is Young's modulus. 

The temperature, displacement, and stress fields have been calculated for the system aluminum-copper, 
for which the dimensionless parameters are M [ = 1.846; M 2 = 1.29; a = 0.8733;/3 = 0.6805; 7 = 0.9105 under the 
condition that a temperature O i = 02 = 1 is maintained for a time v = 3.5 at the surfaces ~ = 0 and ~ = 20 of the 
layers, and then O i = 02 = 0. Table I shows the temperature, displacement, and stress values at the layer 
contact point ~ = 10, from which it follows that in the given time interval tensile stress appears at the contact 
boundary and increases; Table 2 shows the values of the temperature stress at the layer surfaces ~ = 0 and 
= 20. As is evident from Tables 1 and 2, compressive stress first appears, and is then converted into ten- 

sile stress. The stress at the surface layers changes its sign. The temperature-stress values in Table 3, 
corresponding to conditions such that a temperature 02 = 0 is maintained at the surface ~ = 20, show that, in 
the vicinity of contact, stress of a single sign - compressive stress - appears. Note that the calculations of 
the dynamic thermoelastic fields made in this case carry over to the case of a multilayer system, and the 
computation program has been developed with this requirement in mind; for M i = 0, quasistatic temperature 
fields are calculated. The stability condition for the difference scheme is then [4] 

l/h~<~ll2. 
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